
SBOM/TAIBOM what are they are about
Oxford 19/11/24

Dr Nicholas Allott
nick@nqminds.com

SBOM

SBOM - What is it

▪ List of software components
▪ An abstract map of the

software dependencies

An ingredient list
Has it got nuts in it ?

nquiringminds

Food labelling = risk management through a description
of components (ingredients) and dependencies

To contain, track and manage software supply
chain risks

SBOM - How is it used

▪ List of software components
▪ An ingredient list
▪ An abstract map of the

dependencies

Why…?
▪ To track the risks across the

system (supply chain)

nquiringminds

SBOM - Use cases

Risk type Use case

Software vulnerability risk Does my system have any critical
vulnerabilities?
A new critical CVE is announced in component
X - which of my systems are impacted?

Export risk Does my inventory contain any Foreign
Ownership, Control, or Influence (FOCI) issues?

Licensing risk Does my inventory contain any licensing risks -
e.g. GPL pollution ?

Support risk Under CSA (or other) regulations, what
software support liabilities exist through
dependencies on external (open source?)
systems

Stakeholders

● Developer
● Publisher
● Purchasing
● Operations

CHERI Impact Analysis

System
Descriptor

Build
instructions

Binary
Analysis

SBOM CPEs CVEs CWEs Action
Classifier

Before
Action

After
Action

Depending on
scenario we will
have access to
the build
instruction or
have to do binary
analysis

SBOM is an
interoperable
description of
modular
components

Each CPE is
unique and
optionally
versioned

Each CPE has a
CVE from MITRE
(or optional other
sources)

Each modern CPE
has a CWE
descriptor to
determine type

Using CWE alone
(or extra data)
determine
whether issue is
mitigated

Produces an
impact analysis
of CHERIFICATION

nquiringminds

nquiringmindsSBOM First Release

Web APP

1. Comprehensive overview
2. Memory vulnerability Insights
3. Severity breakdown
4. Detailed weaknesses enumeration
5. Mitigation status

SBOM cyber
sub-use case

Integrated SBOM

Business case: evidencing value of an interventions

Development: evidencing and prioritising the code/system intervention to
protect

Procurement: evidencing MemSafe system is better. Just buy the good stuff

Onboarding: selectively onboarding trusted MemSafe system

Impact analysis: when a new vulnerability is disclosed, identifying the impact
surface (subsystems impacted)

Mitigation: addressing the impacted system (reduce cost)

Insurance: pricing cost of risk

nquiringminds

Vulnerability surface

nquiringminds

Vulnerability surface (plan)

Attack surface (defn): The attack surface of a software environment is
the sum of the different points (for "attack vectors") where an
unauthorized user (the "attacker") can try to enter data to, extract data,
control a device or critical software in an environment.[1][2] Keeping the
attack surface as small as possible is a basic security measure

Vulnerability surface (proposal): A subset of the attack surface. Is
enumerable: the superset of all vulnerabilities, in all identified
components of the software

nquiringminds

Vulnerability surface (working defns)

Vulnerability surface - envelope: the superset of identified
vulnerabilities that can be mapped to a specific piece of software, by
deconstructing the component of that software and aggregating all
dependent (mapped) vulnerabilities
Vulnerability surface – active: a subset of the envelope created by
removing all vulnerabilities that are not considered actively exploitable.
Can be created using VEX or other method. (https://cyclonedx.org/capabilities/vex/)
Vulnerability surface - predicted: an estimate of the like hood of a new
vulnerability being discovered in a particular component, which can be
aggregated for a complete piece of software

An array of complex structures that can be mapped to a single number for
comparison (sevirity, expoitabiltiy etc)

nquiringminds

https://cyclonedx.org/capabilities/vex/

Vulnerability surface (next steps)

● An open source tool https://github.com/nqminds/SBOM-GAP
● SBOM-GAP provides a method to estimate

● Vulnerability surface envelope
● Vulnerability surface predicted

● Vadims paper:

nquiringminds

https://github.com/nqminds/SBOM-GAP

And the other use cases

Export risk Government and corporate risk. Legislation
infringement. FOCI and national level threat

Licensing risk Corporate risk and licensing compatibility

Support risk Internal estimate: what is it going to cost me
to to support my software dependencies
under CSA regulations

Invert: how valuable (as open source or
proprietary provider) is the support I am
providing

nquiringminds

SBOM Summary

Clear use cases - practical application

US/EU have strong poistion - UK ???

Imperfect - but fixable

For export alone intervention is essential

TAIBOM

To contain, track and manage information supply
chain risks

AI = Really complex software
 > huge data dependencies

SBOM = risk in software component
AIBOM = risk in data component

Simplified NN lifecycle
Most modern AI

Hardware: Physical Machine

Software: OSS + Software

Data: Configuration

Software: Inference Algorithm

Data: Weights

Inference Machines

Hardware: Physical Machine

Software: OSS + Software

Data: Training data

Software: Training Algorithm

Data: Trained Weights

Training Machines

AI System Challenges

Stability: AIs are complex dynamic data drive systems. Has it changed or been
updated?
Dimensionality: The system is compromised if there is a compromise to any of

- Inference software
- Training software
- Trained weights
- Training data

Air gapped: The inference system is usually not connected to the training system
Distributed: a complex set of disconnected / un-related stakeholders

- Owner of data (separate to)
- Trainer of the system (separate to)
- Application developer (separate to)

Design features

Label/version: foundational capability to label components
Dependencies: define risk dependencies between system and
capabilities
Attestations: make subjective, extensible but interoperable
assertions about components and systems
Distributed: no central point of control, works with air gapped
system
Subjective: different between assertion and belief
Queryable : machine readable and interpretable at scale

nquiringminds

TAIBOM OBJECTIVES

Version/Label Components
What version of software is the inference/training system?
What version of the trained weights am I using?
What version of data was I trained on?

Describe dependencies
Inference system depends on inference SBOM + trained weights
Trained weights depends on training SBOM + training data
…. More complex….

nquiringminds

TAIBOM is not
- A complete and perfect description of an AI system

TAIBOM is
- A static label that can be applied to AI systems and

components versions
- An approximate model, which describes conceptual

dependencies
- A method of making “subjective” attestations about

components
- A method of propagating statements across (air-gapped)

systems

TAIBOM - Use cases (SBOM derived)

Risk type Use case TAIBOM changes

Software vulnerability
risk

Does my Inference OR Training system
have any critical vulnerabilities?
A new critical CVE is announced in
component X - which of my systems
are impacted?

Need to consider dependency between
training and inference system

Export risk Does my inventory contain any Foreign
Ownership, Control, or Influence (FOCI)
issues?

Different export license surrounding AI
EU specific regulation restrict use

Licensing risk Does my inventory contain any
licensing risks - e.g. GPL pollution ?

See copyright risk later

Support risk Under CSA (or other) regulations, what
software support liabilities exist through
dependencies on external (open
source?) systems

Unexplored what implications CSA has
for AI systems

TAIBOM - Use cases - additional

Risk type Use case

Data poisoning Has my training data been intentionally
poisoned - and can I trace impact through to
all deployed inference systems

Data pollution Has my training data been accidentally
polluted?

Performance checks Do I have evidence that the system has been
validated (performs well enough) for the
application

Copyright risk Is there any inherent copyright infringement
risk in the data on which the system has been
trained

TAIBOM - Use cases - additional

Risk type Use case

Bias risk Are there inherent biases in either the data on
which the AI system has been trained or in the
performance on the versioned inference
system

System tampering risk Has the software or the trained weights been
tampered with

Best practice/Legislation Do I have evidence that the system designers
employed best practice in the development of
the system

Supply chain risk Do I trust all the actors involved in the creation
of the system. FOCI checks.

TAIBOM HOW IT WORKS

TAIBOM – Basic capabilities
Labelling/Versioning
Every aspect of a complex AI system needs labelling and versioning. (data, code
and physical systems). Ideally there should be a method of attesting to the
version. There can be various trust models to implement this

Dependencies
A complex AI system has dependencies that need describing to fully understand
provenance. TAIBOM will provide an interoperable method of describing these
dependencies

Attestation
Any actor (author or third party) can provide descriptors for each component of
the system as a whole. (e.g. a training content review, as SBOM validation, a
system integrity check, a fairness assessment).

TAIBOM provides both a mechanism of making these attestations, but also a
framework for the dynamic and subjective evaluation, of combinations of these
attestations.

All features fully decentralised

nquiringminds

Claims and inferences

Deployable AI
System

Training data
Training data

Training data

Deployed Trained
AI System

ML Code base

Training Process Testing/QA/
Validation

Tested AI SystemTrained AI
System

Attestation

Version

Attestation

Version

Attestation

Version

Attestation

Version

Attestation

Version

Attestation

Version

D
ependency

D
ependency D

ependency

D
ependency

Inferences

nquiringminds

How TAIBOM works

Label components
▪ Sign and version all training data sets

▪ Sign training code packages

▪ Sign SBOM descriptor and tie to training code

▪ Train system with configuration

▪ Sign trained weights

▪ Sign inference code

▪ Sign SBOM descriptor of SBOM code

Verifiable Credentials
Data Model v2.0

Sign with W3C VCs
Interoperable
Fully distributed

nquiringminds

How TAIBOM works

Describe dependencies
▪ Training data depends on all data sets

▪ Training system depends on training SBOM + training data

▪ Trained weights depends on training system + training config

▪ Inference system depends on inference SBOM + trained weights

Dependencies are counter signed VCs
Once system can reference another
With a label to describe the relations

nquiringminds

How TAIBOM works

Create attestations
▪ Signx(training-data, no-bias)

▪ Signx(training-data, poison-detected)

▪ Signx(training-data, best-practice)

▪ Signx(training-SBOM, no-vulnerabilities)

▪ Signx(inference-system, performance-good)

▪ Signx(inference-SBOM, no-vulnerabilities)

● Every attestation is another
countersigned VC

● Anyone can countersign:
developer, producer, auditor
or users

● Attestation are extensible -
use any definition of bias you
like..

● System is fully distributed

nquiringminds

How TAIBOM works

Query the system
▪ Has my inference system been tampered with?
▪ Had the trained system declared its training data?
▪ Have licenses been acquired for training data?
▪ Has the training data been tested for poisoning?
▪ Was best practice employed in curation of training

data?
▪ Are there known CVEs on the training system?
▪ Are there known CVEs on the inference system?
▪ Is the inference system performance above the

domain specified threshold?

● Evidence is assimilated
across the dependencies

● Evidence can be
“Minimally disclosed”

● Queries formally run
across the sum of the
evidence

● Quires are subjective: do
you trust the provider of
the information

● Queries are dynamic: data
can change, trust can
change.

● Everything and forensic
robust chain of evidence

nquiringminds

TAIBOM Summary

TAIBOM is SBOM ++

Labelling and versioning is foundational

Without labelling and versioning you can't say anything

It's a decentralized problem - needs decentralised
primitives

Summary

SBOM
It's not perfect - but it does provide value
EU and US have a taken a clear technical and political position
UK position is vague
Trade: SBOM impacts trade. UK companies need to comply with EU
and US legislation. Intervention is needed to upskill
Security : There are operational and strategic security benefits to
adopting SBOM processes in procurement, networking and other.
We need guidance
Technical: SBOM is imperfect. Investment is needed to plug the
holes

TAIBOM
An open collaborative initiative
Builds on preexisting interoperable standards (W3C VCs)
Builds on emerging security practices (SBOM, CVE, model cards)
Reflects the distributed reality of AI systems (not a one stop shop)
Agnostic: does not mandate specific notions of performance or
quality
Can propagate positive evidence: use of best practices
Can propagate negative evidence: vulnerabilities and poisoning
Extensible: simple cryptographic description that can be evolved over
time
Get involved: https://www.techworks.org.uk/ai#el-c655c98d

https://www.techworks.org.uk/ai#el-c655c98d

Dr Nicholas Allott
nick@nqminds.com

BACKUP

TAIBOM - How used

Inventory
Generating An Inventory Of An AI System
A business acquires a competitor and inherits AI-related software assets. The management team of the acquiring business wants
to understand the state of the assets, what their dependencies are, whether they have known vulnerabilities and what licences
are involved. The business uses a TAIBOM client to scan the AI-related software assets to identify their component parts and
then to search for relevant attestations.

This inventory can then be used to perform the typical checks, used in an SBOM scenario, for example:

● Check for vulnerability: the individual AI system components (and the system as a whole) can be checked against known
vulnerability lists. In the case of software and host OS this can use systems such as CVE databases and GitHub
vulnerabilities. In the case of data, we envision new databases being created that annotate data vulnerabilities or checks.

● Check for license compatibility: the individual AI system components (and the system as a whole) can be checked for
license compatibilities.

TAIBOM - How used

Model Download
Downloading An AI Model From A Repository
A business is developing software that integrates a pre-trained AI model for recognising road signs. Domain-specific regulations
require third party assessments of the robustness of the model to adversarial modification of road signs in the wild and internal
cybersecurity teams require information about known vulnerabilities in the model and software assets associated with
performing inference using the model.

The download of the model from the provider includes a TAIBOM with a hash of the model weights, a hash of the inference
code and information about the training data, which is composed of multiple datasets.

After download, the downloaded weights and inference code are hashed by a TAIBOM client and compared to the respective
hashes in the downloaded TAIBOM, confirming that the TAIBOM relates to the downloaded assets. The TAIBOM client
searches for attestations relating to the TAIBOM according to the requirements of the downloader.

The search reveals attestations by a third party that the combinations of the downloaded weights and inference code meet the
regulator's requirements, but also an attestation that one of the components of the training dataset is known to be poisoned.

TAIBOM - How used

Inference Case
Using Inferences Performed By A Third Party AI System
A business is integrating with an API-based AI service that is provided by a third party. The service searches the
internet to provide answers to a user's questions. Before signing up to the service, the business downloads a
TAIBOM that provides information about the underlying model, its training data and the data sources it can
access during inference. Additionally, every inference API response is associated with a supplemental TAIBOM
that provides the URIs of the websites that were used in the specific inference.

A search for attestations relating to the model reveals that it is vulnerable to a variety of prompt hijacking
attacks, training data extraction attacks and prompt extraction attacks. The business decides to proceed with
the service despite the attestations, but, for each inference, looks up the URIs in the supplemental TAIBOM to
find attestations as to whether the pages represent a threat to the model and, if so, the result of the inference is
subjected to automatic inspection.

To review and improve
What user cases are missing? How can we improve the description

Claim example summaries

Version Claims

Data
■ Hashes
■ URI

Software
■ Hashes
■ SBOMS (CPEs)

System Claims

Data
■ Aggregation

Software
■ Aggregation
■ Dependency

AI
■ Aggregation
■ Dependency

Legal Claims

Data
■ License

Software
■ License

AI
■ License

Claim example summaries

Data Behavioural

■ Bias check
■ Owner/author
■ Poisoning check
■ License

conformance?

Software Behavioural

■ Export
conformance

■ License
conformance

■ CVE/Vulnerability
check

■ Performance
check

■ Stability check

AI Behavioural

■ Functional
performance

■ Bias validation
■ Dependency scan
■ Best practice

conformance

